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ABSTRACT

We propose the Nonlinear Zernike wavefront sensor (NLZWFS) for out-of-band differential wavefront sensing to
augment primary mirror stability on LUVOIR and similar mission concepts during exoplanet coronagraphy. This
new data analysis paradigm involving a full polychromatic scalar physical optics model for the phase-shifting
Zernike wavefront sensor removes the linearity assumptions which would otherwise prevent accurate sensing. We
show Monte-Carlo simulations of NLZWFS and focus-diverse phase retrieval to understand the exposure times
necessary to achieve picometer-level stability in the telescope wavefront.
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1. INTRODUCTION

NASA chartered a study of a potential Large Ultraviolet-Optical-Infrared space telescope mission (LUVOIR), to
survey nearby solar systems to discover and characterize exoplanets. The ultimate objective is to discover and
characterize candidate Earth-like rocky planets (exo-Earths) in the Habitable Zones (HZ) of Sun-like stars. One
realization of LUVOIR under consideration would use a coronagraph optical instrument for high-contrast direct
imaging and spectroscopy of potential exo-Earths. Coronagraphs block the on-axis light from a target star while
passing the much dimmer light reflected from planets orbiting the star. With repeated direct-imaging of hundreds
of target stars, LUVOIR would record the positions of many exoplanets and, over time, allow estimation of their
orbital parameters. Spectroscopic observations of exoplanets in the HZ would characterize their atmospheres
and look for the chemical signatures of possible life: water, oxygen, ozone, carbon dioxide and methane. The
LUVOIR mission would be a powerful general astrophysics observatory with diffraction-limited imaging and
high-resolution spectroscopy covering the far-ultraviolet through the near-infrared.

In the classic-Lyot style coronagraph mode, exoplanet imaging is accomplished by focusing light captured
by the telescope onto an occulting mask as illustrated in Figure 1. The mask blocks the light at the very
center of the field but passes light from exoplanets a very small angle off-center. After this mask, the beam is
re-collimated and passed through a Lyot pupil stop removing target starlight diffracted by the occulting mask.
Finally, the beam is re-focused to form a starlight-suppressed image of the exoplanetary system. This image
can be produced either directly on a detector for broadband imaging or on a lenslet array at the entrance of an
integral field spectrograph for wavelength-resolved imaging.

The coronagraphs currently planned for LUVOIR are evolved versions of the Lyot design with two operating
modes. The Apodized Pupil Lyot Coronagraph1,2 (APLC) mode and the Apodized Vector Vortex Coronagraph3

(AVVC) mode add an apodizer at a pupil before the coronagraph mask to introduce diffracting features that
direct the on-axis light more completely into the mask and Lyot stop. The AVVC uses a vector vortex phase mask
to suppress the on-axis light rather than a apodizing mask. LUVOIR includes both modes in its coronagraph by
using multiple filter wheels to change configuration. The two different modes have complementary capabilities;
the APLC is more tolerant of tip-tilt aberrations and resolved stellar objects but it has a larger inner working
angle than the AVVC. Together, the modes would permit LUVOIR to do closer-in observations with the AVVC
when the star is nearly unresolved and more robust observations with the APLC for closer, hence apparently
larger, stars.
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Figure 1. Potential LUVOIR coronagraph elements including hardware for the APLC and VVC modes. The telescope is
pointed at a target star, whose light is passed to the coronagraph, through an apodized pupil mask, and then focused
on a focal plane mask. The mask suppresses the target star image. The rest of the light, including the off-axis planet
light, passes by the mask. Downstream, a Lyot stop suppresses residual diffracted starlight, and then the planet light is
refocused onto a Focal Plane Array (FPA) detector, or fed into an Integral Field Spectrograph. Two Deformable Mirrors
(DMs) are used to establish high contrast. OBWFS and LOWFS wavefront sensors (see Sections 2, 3) drive the DMs and
primary mirror segments to stabilize wavefront and intensity variations to preserve contrast.

2. CONCURRENT OUT OF BAND WAVEFRONT SENSING

Coronagraphs require careful shaping of the complex amplitude field using Deformable Mirrors (DMs) prior
to the masks. With one DM at a pupil image and another at a different location, both phase and amplitude
aberrations can be addressed. Iterative algorithms such as electric field conjugation (EFC) then act to suppress
speckles of light that occur in the “dark hole” detection region on the focal plane. Successive iterations of such
algorithms measure speckles on the FPA and then adjust the DMs to suppress speckle in the dark hole region.
This establishes the contrast, the ratio of peak starlight to peak planet light, required to image exoplanets. The
contrast required to direct image exo-Earths orbiting Sun-like stars is 10−11. Achieving this contrast requires
shaping of the wavefront error or optical path differences over the pupil to a precision of about 20 pm RMS. Note
that this is not a requirement for nulling or fully-correcting the wavefront error, just precise control. Furthermore,
the wavefront shape once established by the DMs, must be preserved with an accuracy of 10 pm RMS at the
highest spatial frequencies. This includes stabilizing drift effects from throughout the beam train, from the large
telescope, the relay optics, and the DMs themselves.4 This “ultra-stability” cannot be provided by purely passive
means since basic material drifts quickly overwhelm the extraordinarily tight precision required. Therefore, active
means, including a wavefront sensing method operating concurrently with the science instrument, will be required
to preserve the speckle nulling during coronagraphy.

For this paper, we consider concurrent wavefront sensing (WFS) strategies for an Out-Of-Band Wavefront
Sensing (OBWFS) method that would acquire a copy of the post-DM field at a wavelength shorter than the
science instrument. As sketched in Figure 1, the OBWFS would sample a pupil-like beam post DMs using
a dichroic mirror. This would be done for several reasons; the first being that sampling the post DM fields
eliminates most sources of drift (significantly that of the DMs) that other metrology methods, such as edge
sensors on the primary mirror, might miss due to non-common paths. The second reason is efficiency; since
exoplanets have most of their power in the longer wavelengths, OBWFS decreases the amount of exoplanet light
that would be wasted for WFS purposes rather than being passed to the science camera. The third reason
is accuracy as the shorter wavelengths are inherently more useful for wavefront sensing of tiny optical path
differences than the longer wavelengths going to the science camera. A final reason is spatial resolution: since
OBWFS would sample the entire post-DM pupil it has the advantage of accessing all spatial frequencies in the
field. This is in contrast to concurrent WFS strategies like the Low Order Wavefront Sensor5 (LOWFS) which
have an integral spatial filter that prevents recovery of fine wavefront detail.
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Figure 2. Sketches of optical layouts and sample output images for OBWFS strategies such as (a) focus-diverse phase
retrieval (FDPR) and (b) Zernike wavefront sensing (ZWFS). If FDPR, the FPA is on a stage that allows it to move
through focus. For ZWFS, the ZWFS dimple is on a stage moving transverse to the beam that allows introduction of
various dimples into the beam.

3. PHASE RETRIEVAL AND LINEARIZED ZERNIKE STRATEGIES FOR OBWFS

We consider two different high-precision image-based wavefront sensing strategies for OBWFS that require little
additional hardware and leave few opportunities for additional non-common path errors and calibration issues.

The first strategy uses focus-diverse phase retrieval6–9 (FDPR) applied to OBWFS illustrated in Figure 2
(a). FDPR has an established history for fine WFS of space telescopes including Hubble10,11 and the James
Webb Space Telescope.8,12 In the FDPR strategy, light from the post-DM pupil is picked off and focused by a
lens or mirror to a FPA that is near focus. The FPA then acquires what is usually two or more Point Spread
Function (PSF) images at various offsets relative to perfect focus. This ensemble of images forms the data
for a phase retrieval algorithm such as modified versions8,9 of the venerable Gerchberg-Saxton algorithm13 or
similar iterative-transform algorithms like the HIO algorithm.14 For this work, though, we utilize the FDPR
algorithm form6,7 that matches a parametric model for the FPA output to the measured data by minimizing a
data consistency metric such as the sum of the squared errors between data and a parametric model. The model
includes free parameters for the unknowns in the system that affect phase of the pupil-like field incident on the
OBWFS. We will refer to the data consistency metric as an error metric as it will be the squared error between
measured data and model prediction. The error metric is reduced by a gradient-descent nonlinear optimization
like the Broyden-Fletcher-Goldfarb-Shanno15 (BFGS) algorithm that iteratively adjusts free parameters until a
minimum of the error metric is located. For this work, the BFGS algorithm was provided a computationally fast
function generating the gradient of the metric with respect to the free parameters. The gradient function was
found by means of reverse mode of algorithmic differentiation16 (RMAD) which greatly simplifies development
of such gradients for phase-retrieval like problems.

The second OBWFS strategy we consider uses the Zernike wavefront sensor17–20 (ZWFS) hardware shown in
Figure 2 (b). This WFS is essentially the classic phase-contrast method of Zernike21 that is most often applied
to phase microscopy applications but used here to infer quantitative pupil phase aberration. For ZWFS, light is
focused as in FDPR but at focus there is a transparency with a small circular feature that produces a π/2 radian
phase delay centered on the point spread function. This feature, called the dimple, is on the order of a Rayleigh
criterion22 in diameter and it delays the central core of the PSF to yield a reference spherical beam to which the
rest of the field can be compared. The ZWFS is a common-mode and self-referencing analog of a Mach-Zehnder
interferometer18 where phase aberrations in the input yield phase-sensitive intensity variations in the collimated
space after the PSF plane. Images are collected with dimples having various central phase delays to collect an



ensemble of images for the ZWFS algorithm to analyze. Typical useful values for dimples correspond to optical
phase delays of π, π/2, 0 and −π/2 radians.

Systems using ZWFS have been demonstrated on-sky for ground telescope wavefront sensing applications.23–26

A variation on the classic ZWFS design is the LOWFS being considered for the WFIRST mission concept and
being demonstrated on a high fidelity testbed.5 As sketched in Figure 1, the LOWFS sensor integrates a ZWFS
dimple into the Lyot focal plane mask. Normally, a Lyot focal plane mask would absorb the target star light
but in LOWFS the Lyot focal plane obscuration is reflective and has with a small phase dimple. Light reflecting
off the focal plane mask can then be collimated and used for sensing the lower order Zernike modes. The higher
spatial frequency modes are filtered out due to the relatively narrow extent of the Lyot focal plane obscuration.

The prior ZWFS implementations we are aware of utilize an approximation that is more valid when the
overall wavefront error magnitude is small compared to a wave. When this is true, there are simple approximate
expressions for the wavefront phase that are linear in measured FPA intensity like Eq. (11) in Wallace19 and
Eq. (8-3) in Goodman.22 For simplicity, we refer to these prior ZWFS reconstruction algorithms that use
significant approximations as linearized-ZWFS methods. This linearization is convenient but it reduces the
accuracy of the retrieved phase when the wavefront aberrations differs significantly from perfectly nulled. For
the hypothetical LUVOIR coronagraph, it is expected that the post-DM wavefront will be some complicated
wavefront solution that the speckle nulling algorithm has settled upon over many iterations and thus linearized-
ZWFS algorithms will be insufficiently accurate. Some of these effects can be mitigated by including second-order
effects as in N´Diaye20 to demonstrate nanometer-accurate results26 on-sky. However, for picometer-accurate
OBWFS, the approximate methods are insufficiently accurate.

4. NONLINEAR ZERNIKE WAVEFRONT SENSOR

We developed a new ZWFS data processing method to yield what we term the Nonlinear Zernike wavefront sensor
(NLZWFS) which alleviates the accuracy issues associated with linearized-ZWFS. Like the FDPR method chosen
in Section 3, NZWFS fits a parameterized model to the observed data by minimizing an error metric. NZWFS
uses polychromatic scalar Fourier optics to propagate fields from the telescope pupil to the plane of the measured
data FPA. Assuming a useful minimum of the error metric can be found where the parameterized model closely
matches the measured data, NZWFS is not subject to gross nonlinearity errors or biases due to the broadband
nature of the light used.

Explanation of the ‘forward’ model for NLZWFS begins with discretized model for the phase in the pupil-like
plane entering the OBWFS represented by a two-dimensional array. Assume that the optical path differences
can be decomposed into some ensemble of J not-necessarily orthogonal two-dimensional basis functions Zj . Let
the optical path difference in the post-DM field at a particular reference wavelength λo be denoted in radians by
an array

Φ =

J∑
j=1

ajZj , (1)

where aj is a coefficient describing the component of the wavefront aberration due to the jth basis function. The
algorithm we propose uses an explicitly polychromatic model where L discrete wavelength-dependent irradiance
contributions will be summed to estimate the FPA detected irradiance. For convenience, define Λl = λo/λl where
λl is the wavelength of the lth discrete irradiance contribution.

A model for a discretely sampled equivalent of the post-DM field is the complex-valued array

g = A ◦ exp (iΛlΦ), (2)

where the array A is an estimate for the post-DM pupil amplitude that has been thresholded at zero to be
non-negative and the ◦ operator indicates element-wise multiplication between two like-sized array quantities.

For simplicity, we assume the post-DM pupil coming into the OBWFS is in the front focal plane of the first
lens of the sensor and that the plane containing the transparency with the dimple is in the back focal plane of
the first lens. Consequently, the field in the back focal plane and incident on the transparency can be described



using a single Fourier transform such as Eq. (5-19) in Goodman22 under suitable approximations. For fast
approximation of such continuous Fourier transforms using discrete arrays there is the chirp-Z transform27 and
matrix-multiply.28 These two realizations of a Discrete Fourier Transform (DFT) are useful for gradient-based
polychromatic phase-retrieval since they get around some of the performance and sampling limitations imposed
by the well known fast Fourier transform. For NLZWFS, we use the matrix-multiply operation represented by
Eq. (15) in Moore28 and denote the propagation of the array g to an array h using an operation F (g, α). α is
unit-less scaling term that is a property of the physical optics system simulation that often must be fit to the
measured data for accurate modeling. In more physical and dimensioned terms,

α =
∆h∆g

zλo
(3)

where z is the lens back-focal length and ∆h and ∆g are the distances between samples in h and g, respectively.

The field just-prior to the dimple transparency for a wavelength l is

h = ΛlF (g,Λlαo) , (4)

where αo is the α for the propagation at the reference wavelength λo. The initial scaling factor of Λl in Eq. (4)
preserves the power conservation as a function of wavelength given the DFTs defined in the earlier works.27,28

The later Λlαo term in Eq. (4) accommodates the wavelength-dependent scaling in the DFT relative to the
nominal condition of αo corresponding to λ = λo.

Let the real-valued array Dk be a radian-denominated optical path length difference due to the ZWFS phase
dimple in the kth acquired image and S be an array representing the amplitude associated with any field-stop
imposed in the dimple plane. In the thin-object approximation, the field just after the dimple plane is then

Hk = S ◦ exp (iΛlDk) ◦ h. (5)

Note: the size of the arrays contributing to g must be large enough and well-sampled enough that that there are
numerous samples (e.g. 8 to 24) across the diameter of the dimple feature in Dk.

Assuming that the dimple transparency is in the front-focal plane of the second lens and that the FPA is
situated at the back-focal plane of the second lens, the irradiance falling on the detector for a given image k and
at wavelength sample l is

Ik,l = sl |ΛlF (Hk,Λlαo)|2 , (6)

where sl is a spectral weighting value for the lth wavelength. Since Eqs. 4 and 6 share the same value of Λlαo,
it has been implicitly assumed that the ratio of the sampling interval in g to the focal length of the first lens is
the same as the ratio of the sampling interval of the FPA to the focal length of the second lens.

The total irradiance detected in the kth ZWFS image due to all of the discretely sampled per-wavelegth
irradiances is

Ik =

L∑
l=1

Ik,l, (7)

where the summations is assumed to be element-wise over the samples of realizations of Ik,l.

As in Moore,28 a model for the FPA detected irradiance given Ik, including a detector gain βk and detector
bias γk, is

Mk = βkIk + γk1, (8)

where 1 is an array of values which are all 1. Define Dk to be the kth measured ZWFS data from the FPA
and let wk be a array of weightings on samples in the FPA coordinates to be described below. A weighted
sum-of-squared error metric between the model and measured data for the kth ZWFS data is

Ek =
∑
x∈X

wk[x] ◦ (Mk[x]−Dk[x])2, (9)



where the summation is taken over the set of pixels X in the array linearly indexed by x. The unknown βk and
γk can be computed using Appendix C of Moore28 to make Eq. 9 and detector gain-and-bias invariant metric.29

Summing over the Ek for individual data collections yields a single scalar

E =

K∑
k=1

Ek, (10)

a sum-of-squared error metric for the K arrays of measured ZWFS data. We define samples of the array wk to
take the value zero where the FPA has unreliable pixels and a value of D−1 (element-wise inverse) everywhere
else. This causes Eq. (10) to be approximately proportional to the negative log-likelihood function for a Poisson
random process yielding Dk given the parameters of Ik assuming that Dk is a good approximation for the
variance of Ik and that the photon flux is large enough that the Poisson distribution can be approximated with
a Gaussian.

A computer algorithm that computes ∇E with respect to the aj and the values other potential nuisance
parameters like αo and the pixels in A can be programmed using the RMAD results in earlier literature.16,28 It
is even possible to compute gradients with respect to unknowns in the dimple transparency domain should Dk or
S be unknown. To date we have only explored solving for unknown aj and αo using gradient-based optimization
and these other unknowns terms have been estimated by trial and error.

Phase estimation in the NLWFS method proceeds as follows,

1. Data Dk is acquired for various dimples having various delays.

2. Approximate starting values for aj and any other terms that are to be found by optimization are input
into the algorithm.

3. The BFGS algorithm is applied to minimize E by iterative evaluation of E and ∇E with respect to the
unknown aj and any other unknown terms.

If a robust minimum is found and Ik matches Dk well, the final value of aj used by the BFGS algorithm is
consistent with a maximum likelihood estimation of aj given Dk. In some cases, a robust minimum may not be
found without multiple iterations on Step 3 where different types of unknowns are allowed to vary. For instance,
if Zj are Zernike functions on a nearly-filled pupil, it may improve the probability of success to optimize for just
the coefficients of the lowest-order functions first before allowing the higher order terms and αo vary.

5. MONTE-CARLO SIMULATION

To demonstrate OBWFS using FDPR and NLZWFS, we applied them in a Monte-Carlo simulation experiment
to compute segment piston, tip and tilt for a LUVOIR-like segmented aperture telescope having 120 segments.
This Monte-Carlo experiment assessed how well a change in wavefront on the order of 10 pm RMS between two
epochs in time could be sensed in the presense of a larger fixed error having departures from null of 41 nm RMS
on average. An example wavefront error for an initial epoch is shown in Figure 3 (a) and an example change
from initial epoch to final epoch is shown in Figure 3 (b). For the Monte-Carlo simulation, the fixed aberrations
and the change aberrations were randomly generated.

The simulated light used was λo = 440 nm and had a uniformly-distributed 22.3% spectral bandwidth
approximating the B waveband. This is realistic given the OBWFS envisioned for LUVOIR. Photon counting
noise (Poisson-distributed) was applied to the simulated data for various fluxes on the interval between 2× 109

and 2× 1013 photons per time epoch. Read noise, flat-fielding and other error sources involving calibration were
neglected to understand the essential photon efficiency limits of WFS.

The NLZWFS data simulated for each epoch included images for dimples having delays of +π/2 and −π/2
radians of phase. An example image in the initial case is shown in Figure 3 (c). After accounting for the
mirroring of both coordinate axes about the origin due the beam being relayed through two positive lenses, it is
readily seen that there is a correlation between this simulated ZWFS image in Figure 3 (c) and the large initial
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Figure 3. (a) Example initial epoch randomly-generated wavefront, (b) example change from initial epoch’s wavefront
to final epoch’s wavefront, (c) Example simulated ZWFS data image having 2 × 1010 photons, (d) Example difference
between ZWFS image at initial epoch and final epoch, (e) Example FDPR PSF data image having 2 × 1010 photons and
(f) Example difference between FDPR PSF at initial epoch and final epoch.

wavefront phase shown in Figure 3 (a). The high-degree of spatial correlation between wavefront phase and
image intensity illustrates the principal signal exploited by all ZWFS algorithms. However, as shown in Figure
3 (c), the true ZWFS images have “ringing” in the intensity near segment boundaries. The linearized-ZWFS
algorithms and even the second order methods like N´Diaye20 do not account for this artifact of the physical
optics phenomenon.

The first-order correlation between wavefront and ZWFS image observed above repeats in the differences in
wavefront and observed intnsity between the first and final epochs. Though difficult to observe due to photon
noise, the change in wavefront from Figure 3 (b) approximately maps to the difference between the ZWFS images
in the final and initial epochs shown in Figure 3 (d).

The FDPR PSF data simulated for each epoch included two frames: one with a defocus of 3 waves peak-to-
valley and the other with a defocus of −3 waves peak-to-valley. An example initial epoch FDPR PSF is shown
in Figure 3 (e) and the difference between a final epoch PSF and an initial epoch PSF in Figure 3 (f). Unlike
ZWFS modes, the relationship between observed data and the underlying PSF is highly nonlinear and spatially
uncorrelated; there is no easy comparison between Figures 3 (a)-(b) and Figures 3 (e)-(f).
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Figure 4. Plot showing the mean RMS of the wavefront sensing error (evaluated over the ensemble of Monte-Carlo
experiments) for various photon fluxes.

Finally, to ensure that the Monte-Carlo simulation was evaluating the small change detection capabilities of
the algorithms rather than their stagnation properties or “capture range,” a randomized starting phase estimate
for each optimization was provided to the algorithm that was within about 4 nm RMS of the true initial wavefront.
This is equivalent to presuming an estimate for the wavefront is available prior to engaging concurrent OBWFS.
We envision such estimates might be obtained using FDPR using many focus planes or through some other WFS
method like a Shack-Hartman detector.

5.1 Simulation Results

The simulation results are described in Figure 4 in terms of the mean wavefront sensing error as a function of
photon flux. The NLZWFS wavefront sensing method shows a consistent, if slight, photon efficiency advantage.
With less than 1012 photons per epoch, NLZWFS wavefront sensing error was about 20% better and above that
threshold NLZWFS’s error was about 9% better.

Stark30 assembled a list of target stars for an exoplanet evaluation study using the notional LUVOIR conoro-
graph. Most of these stars have a stellar magnitude in the B waveband of mB = 6 with some target stars being
as dim as stellar magnitude mB = 10. Assuming a clear aperture of 135 meters-squared, perfect transmittance
of the telescope and perfect efficiency of detection, the exposure durations on a mB = 6 target star necessary for
collecting data for each epoch are listed in Table 1. The same but for a mB = 10 star is shown in Table 2. Note
that this analysis does not account for calibration errors, losses in the optical system, detector efficiency or read
noise.

Table 1. Expected exposure times for a target star with a B stellar magnitude of mB = 6.

Exposure time per epoch to achieve FDPR NLZWFS
10 pm RMS change error 3.6 seconds 2.4 seconds
5 pm RMS change error 13.4 seconds 9.0 seconds
1 pm RMS change error 382 seconds 272 seconds



Table 2. Expected exposure times for a target star with mB = 10.

Exposure time per epoch to achieve FDPR NLZWFS
10 pm RMS change error 142 seconds 93 seconds
5 pm RMS change error 532 seconds 358 seconds
1 pm RMS change error 3.6 hours 3.0 hours

6. SUMMARY

Direct imaging of extrasolar planets using a coronagraph will require extraordinarily stable total system wave-
fronts (to the picometer level) in order to preserve coronagraph contrast at the 10−11 level. The methods de-
scribed here for wavefront sensing concurrent with coronagraph observations provide the measurements needed
to accomplish this.

We introduced the nonlinear Zernike wavefront sensing algorithm which allows for high-accuracy wavefront
sensing in the presence of non-null wavefronts. It incorporates a full polychromatic broadband solution to
the Zernike wavefront sensing data processing. This new wavefront sensing mode was compared to focus-diverse
phase retrieval and their performance as a function of target star brightness was evaluated. We showed wavefront
sensing times commensurate with wavefront drift time constants for most stars in the current LUVOIR target list
given assumptions of perfect telescope efficiency, optimal detectors and no calibration errors. The new Nonlinear
Zernike Wavefront Sensor approach always showed the best performance, but focus-diverse phase retrieval was
close behind.

Work is underway to demonstrate the methods described here in simple laboratory testbeds. These initial
tests will be in air which will limit ultimate performance. In the longer term, demonstration in vacuum will
be required so we are pursuing implementation as part of the Decadal Survey Testbed31 which will include
coronagraph and WFS instruments.
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